
11 Cauchy’s integral formula and first applications

Holomorphic functions are remarkable creatures. For instance, the value of a holomorphic function
inside a closed path is totally determined by the values of it along this path. To be more precise,

Proposition 11.1. Let f be holomorphic in simply connected domain E. Then

f(z) =
1

2πi

∮
γ

f(w)

w − z
dw

for any point z inside positively oriented closed path γ ⊆ E.

Proof. First note that now we need to be careful about the orientation. Second, by Cauchy’s theorem
and the assumption that E is simply connected I can reduce my integral from F (w) = f(w)/(w − z)
to the integral along γϵ = ∂B(z, ϵ) along a circle with center at z of radius ϵ:∫

γ
F =

∫
γϵ

F.

The last integral can be written as∫
γϵ

f(w)

w − z
dz =

∫
γϵ

f(w)− f(z)

w − z
dw +

∫
γϵ

f(z)

w − z
dw.

The second integral in the last line is our fundamental example, and evaluates to 2πif(z). All I need
to do is to show that the first term in the sum approaches zero as ϵ → 0. To this end I note that since
f is differentiable at z, the ratio

f(w)− f(z)

w − z

is bounded for all w in B(z, ϵ) and therefore bounded on ∂B(z, ϵ). It implies, by ML-inequality, that∣∣∣∣∫
γϵ

f(w)− f(z)

w − z
dw

∣∣∣∣ ≤ M · 2πϵ → 0, ϵ → 0,

as required. �

Here are a couple of examples how one can use Cauchy’s integral formula to evaluate the integrals.

Example 11.2. Evaluate ∫
|w−4|=5

cosw

w
dw.

Since 0 is inside the circle with the center 4 and radius 5, I get∫
|w−4|=5

cosw

w
dw = 2πif(0) = 2πi cos 0 = 2πi.
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Example 11.3. Evaluate ∫
|w−i|=1

w2

w2 + 1
dw.

Again, the expression under the integral sign is not holomorphic inside |w− i| = 1 and hence I cannot
conclude that the integral is zero. I can write, however, that∫

|w−i|=1

w2

w2 + 1
dw =

∫
|w−i|=1

w2

(w + i)(w − i)
dw =

∫
|w−i|=1

f(w)

(w − i)
dw = 2πif(i) = 2πi

i2

i + i
= −π.

Example 11.4. Evaluate ∫
|z|=2

e
iπw
2

w2 − 1
dw.

Here I have a problem that the expression under the integral sign has two problem inside the circle
|z| = 2, at ±1. To deal with it, I use partial fractions to write

e
iπw
2

w2 − 1
=

1

2

e
iπw
2

w − 1
− 1

2

e
iπw
2

w + 1
.

Therefore, my integral is given now as a sum of two integrals, to each of which Cauchy’s formula
can be applied, and I get ∫

|z|=2
= 2πi

(
e

iπ·1
2 − e

iπ·(−1)
2

)
= i.

Cauchy’s formula can be used to show that if function f is holomorphic in E, then f ′ is holomorphic.
Using induction it means that if f is holomorphic (differentiable), it is infinitely differentiable! Here
is how I can do this.

Proposition 11.5. Let f be holomorphic on simply connected domain E. Then for any closed posi-
tively oriented path γ ⊆ E and z inside γ, I have

f ′(z) =
1

2πi

∫
γ

f(w)

(w − z)2
dw, (11.1)

f ′′(z) =
2!

2πi

∫
γ

f(w)

(w − z)3
dw, (11.2)

or in general

f (n)(z) =
n!

2πi

∫
γ

f(w)

(w − z)n+1
dw. (11.3)

I will prove only (11.1), leaving the rest as a similar, but somewhat tedious exercise in performing
estimates with complex integrals. Note that equations (11.1) and (11.2) are of very different nature
in that that existence of f ′(z) is assumed, whereas for (11.2) it must be proved. Moreover, since f ′′

exists, it means that f ′ is holomorphic, and induction means that f is infinitely differentiable.
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Proof. Again, as in Cauchy’s formula, γ can be replaced with γϵ = ∂B(z, ϵ). Using Cauchy’s formula,
I can write

f(z + h)− f(z)

h
=

1

2πi

∫
γϵ

f(w)

(
1

w − z − h
− 1

w − z

)
dw =

1

2πi

∫
γϵ

f(w)dw

(w − z − h)(w − z)
.

Therefore,
f(z + h)− f(z)

h
− 1

2πi

∫
γϵ

f(w)

(w − z)2
dw =

h

2πi

∫
γϵ

f(w)dw

(w − z − h)(w − z)2
,

and the goal now to show that the last expression tends to 0 as h → 0. I choose h such that |h| < ϵ/2
In this case, |w−z−h| ≥ |w−z|−|h| > ϵ/2 for all w ∈ B(z, ϵ). Since f is holomorphic, it is continuous
on γ, and hence bounded, |f(w)| ≤ M for w ∈ γ. Now by the ML-inequality, I obtain the estimate∣∣∣∣f(z + h)− f(z)

h
− 1

2πi

∫
γϵ

f(w)

(w − z)2
dw

∣∣∣∣ ≤ M
|h|
2π

2

ϵ3
,

which approaches 0 as h → 0.
I will leave it as an exercise to prove the rest of the proposition. �

Example 11.6. To illustrate applications of the proven proposition to calculations of integrals, con-
sider the following example: ∫

|z|=2

cosh z

(z + 1)3(z − 1)
dz.

Function cosh z/((z + 1)3(z − 1)) is clearly holomorphic anywhere except two points z1 = −1, z2 = 1,
and both of these points are inside the circle |z| ≤ 2.

First approach. As before, I will start with using partial fraction decomposition. I find that

1

(z + 1)3(z − 1)
=

1

8
· 1

z − 1
− 1

8
· 1

z + 1
− 1

4

1

(z + 1)2
− 1

2

1

(z + 1)3
.

Therefore, by the linearity of the integral, I need to evaluate four integrals. Using Cauchy’s formula
for the first two and (11.3) for the last two I find∫

|z|=2

cosh z

z − 1
dz = 2πi cosh 1,∫

|z|=2

cosh z

z + 1
dz = 2πi cosh 1,∫

|z|=2

cosh z

(z + 1)2
dz = 2πi(cosh z)′

∣∣
z=−1

= −2πi sinh 1,∫
|z|=2

cosh z

(z + 1)3
dz =

2πi

2!
(cosh z)′′

∣∣∣∣
z=−1

= πi cosh 1,

and therefore∫
|z|=2

cosh z

(z + 1)3(z − 1)
dz =

2πi cosh 1

8
− 2πi cosh 1

8
+

2πi sinh 1

4
− πi cosh 1

2
=

sinh 1− cosh 1

2
πi = −πi

2e
.
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Second approach. Here I will present a technique that soon will be generalized and put in the
general context. First, I connect two sides of my circle |z| = 2 with a line segment such that z1 and
z2 lay in different parts of the circle. Let γ1 be the closed path composed of the part of the circle and
my line segment that encloses z1 and γ2 be the closed path composed of the part of the circle and
the line segment that encloses z2 (make a sketch!), and both paths are positively oriented. Due to the
properties of the integrals I have ∫

|z|=2
=

∫
γ1

+

∫
γ2

.

Now note that each of the integrals on the right hand side has only one “problem” point inside, and
to each of them formula (11.3) can be applied. Specifically,∫

γ1

cosh z

(z + 1)3(z − 1)
dz =

∫
γ1

cosh z
z−1

(z + 1)3
dz =

2πi

2!

(
cosh z

z − 1

)′′∣∣∣∣
z=−1

= −2e−1 + cosh 1

4
πi.

∫
γ2

cosh z

(z + 1)3(z − 1)
dz =

∫
γ2

cosh z
(z+1)3

z − 1
dz = 2πi

cosh z

(z + 1)3

∣∣∣∣
z=1

= πi
cosh 1

4
.

Summing these two results leads to the same answer −πi/(2e).

There are a number of consequences of the proven proposition. One of them is the so-called
Morera’s theorem.

Theorem 11.7. Let f be continuous in E and∫
γ
f = 0

for all closed paths γ ⊆ E. Then f is holomorphic in E.

Proof. Since all the integrals around closed paths are zero, it implies the existence of antiderivative
F , which is holomorphic, i.e., F ′ = f . Since by the proven proposition holomorphic function has a
holomorphic derivative, f is holomorphic. �
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